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presented in Table III. They give a revised contour 
diagram of the polarization as a function of the energy 
and the scattering angle, in the energy range 3.7 to 4.7 
MeV, as shown in Fig. 6. 

It appears from the foregoing analysis that polariza-

I. INTRODUCTION 

THE fission of the atomic nucleus into two or more 
parts is a phenomenon of well-established im­

portance. The accumulation of experimental data on the 
various aspects of fission is constantly increasing. From 
a theoretical point of view, however, our present under­
standing of it dates back practically to the late thirties 
when Bohr and Wheeler proposed the liquid-drop 
model of fission.1 This classical model is essentially the 
only model that has been dealt with. But even within 
its own frame of reference, numerical calculations have 
been scarce and unsystematic. They were mostly of a 
static nature2 (saddle-point shapes, etc.), as opposed to 
the more intricate problems of the statistic-mechanical3,4 

and dynamic5,6 aspects of fission, treated separately. 
Perhaps the most outstanding feature of fission is its 

asymmetry. In spontaneous fission (and fission pro­
duced by low-energy projectiles) nuclei break mostly 
into two unequal parts. The classical liquid-drop model 
completely fails to explain this effect. However un­
certain be its other quantitative implications, it un­
ambiguously predicts the fission to be symmetric, A 
qualitative explanation is proposed by taking into 
account the shell structure of the nucleus. The final 
products of fission tend to abound around mass numbers 
that represent strongly bound almost-magic nuclei. The 
liquid-drop model and the shell model are, however, 

1 N . Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939). 
2 For example: S. Cohen and W. J. Swiatecki, Lawrence Radia­

tion Laboratory Report UCRL-10450, 1962 (unpublished). 
3 P. Fong, Phys. Rev. 122, 1543 (1961). 
4 T. D. Newton, in Proceedings of the Symposium on the Physics 

of Fission, Chalk River, Ontario, 1956 (unpublished). 
6 D. L. Hill and J. A. Wheller, Phys. Rev. 89, 1102 (1953). 
6 D. L. Hill, in Proceedings of the Second United Nations Inter­

national Conference on the Peaceful uses of Atomic Energy, Geneva, 
1958 (United Nations, Geneva, 1958). 

tion measurements provide a very sensitive method of 
determining the complete and unique phase-shift pre­
diction, provided that precise cross-section angular dis­
tributions are available at the same proton energies 
where the polarization has been measured. 

based on completely different basic assumptions. The 
first is a strongly interacting model of the nucleons, 
whereas the second is essentially an independent-
particle model. More than a mere reconciliation between 
these two extremes is needed in order to be able to 
treat quantitatively the effects of nuclear forces on 
fission. Moreover, the shell structure is a characteristic 
of a spherical, nonexcited nucleus, while the fissioning 
process involves excitations and large distortions of the 
nuclear shape. 

The purpose of this work is to treat fission as a dy­
namical process, and to incorporate later nuclear struc­
ture effects into this treatment. 

The formalism used is a classical one. It is only 
through the determination of initial conditions that 
quantum effects affect the problem. The nucleus is as­
sumed to be axially symmetric. This assumption is not 
as restrictive as it might first appear, since we are not 
interested in minor details of structure or distributions 
but rather in gross average properties and their de­
pendence on nuclear characteristics. This assumption 
amounts to an over-all averaging of the fission process. 
Thus, strong local distortions of the nuclear surface are 
practically not considered. 

The effects of the nuclear forces in producing asym­
metric (mainly pear-shaped.) nuclei have already been 
studied to some extent.7'8 Without dealing here with the 
exact nature of these calculations, we would like to 
stress that they treat only the equilibrium state of the 
nucleus.9 They do not affect the saddle-point shape, the 
scission point, or the evolution of the system between 
these points. In fission, however, it is these stages that 

7 H. Faissner and K. Wildermuch, Nucl. Phys. (to be published). 
8 K. Lee and D. R. Inglis, Phys. Rev. 108, 774 (1957). 
9 1 . Dutt and P. Mukherjee, Phys. Rev. 124, 888 (1961). 
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contain most of the physical information.10 The main 
idea is, therefore, to take into account the nuclear effects 
not only at a particular stage but along the whole 
fission process. 

The basic assumptions and the general procedure 
followed in performing such calculations are given in 
Sec. II. In Sec. I l l , a practical method for doing a large 
variety of calculations of this nature is introduced. Sec. 
IV deals with the computation of the Coulomb energy 
and its derivatives, which has to be performed with a 
high degree of accuracy. In the last sections (V and VI) 
a special case is quantitatively solved. However, since 
the main objective of these calculations was to provide 
a numerical check for the methods outlined, the quoted 
results are of a fragmentary nature. 

II. THE EQUATIONS OF MOTION 

The assumption which underlies the following treat­
ment is that the Hamiltonian of the three-dimensional 
liquid drop is uniquely determined by its two-dimen­
sional boundary. In the case where the drop has axial 
symmetry, it is further assumed that the physical 
information is completely contained in the generating 
line shape. This is certainly true for static properties of 
the system. For dynamical properties (especially the 
kinetic energy), explicit relations have to be assumed or 
established in order to justify this approach. For the 
case of an irrotational flow of an incompressible, non-
viscous fluid, the motion of the surface determines 
uniquely the motion of the volume within. The exact 
determination, however, is usually very complicated. 
Simplifying assumptions on the nature of the motion are 
therefore made. The explicit assumption used here is one 
suggested by Wheeler.11 It describes the flow as a flow 
of circular layers of fluid. That is, all points which are 
at one time on a plane perpendicular to the symmetry 
axis will continue to be on such a plane ever after. A 
disk of fluid, therefore, will change its thickness and 
radius with time, but will still remain a disk. 

We assume, therefore, an axially symmetric system, 
bounded by a curve y(x) (y and x are the first two 
cylindrical coordinates). y{x) is a function of time, and 
its behavior is subjected to the classical laws of motion 
in the Hamiltonian or Lagrangian formalism. 

The Hamiltonian H of the system is of the general 
form 

H=H(y{x),y{x)), (1) 

where the dependence of H on the derivatives of y(x) 
with respect to x is implicitly absorbed into the depend­
ence on y(x). Defining the canonical coordinate with 
respect to y(x) 

p(x) = 8H/8y(x). (2) 
11 J. A. Wheeler (unpublished). 
10 J. A. Wheeler, in Fast Neutron Physics, edited by J. B. Marion 

and J. L. Fowler (Interscience Publishers, Inc., New York, 1962), 
Part III. 

The equations of motion are 

y(x) = dH(y(x),p(x))/dp(x), (3) 

p(x) = - dH(y(x),p (x))/dy(x). (4) 

Expressed in this way, x is describable as a parameter 
specifying an infinite set of independent coordinates 
y(x). The transformation to canonical coordinates is 
performed making use of Wheeler's assumption about 
the nature of the motion. The potential energy depends 
only on y{x). The kinetic energy can be expressed in 
the form 

T=- I I G(x,xf)y(x)y(x')dxdxf, (5) 

where (see Appendix A) the kernel G is given by 

G(x,xf) 

f dy dy 
= ir(rly(x')—(x)d(x,x')+y(x)—(x')d(x'\x)-\-y(x)y(xf) 

\ dx dx 

i8(x,x')+ I 
i dy ->2 

2Ldx 

y{x"y 
0 \X »XmX JU/X (6) 

where 

0(ao,ai,- • •,«„) = ! , if H(oa—ao)>0, 

(7) 

= 0, if ri(a,—a0)<0 

Using the definition of Eq. (2), we have 

p(x)= G(x,xf)y(x')dxf. 

Defining the inverse kernel G~l{x,x') by the equation 

G~1{x,x,)G{x\xn)dxf = 8{x,xn), (8) 

the kinetic energy can be expressed in terms of p(x) as 

T = - / /G~1(x,xf)p(x)p(xf)dxdxf. (9) 

The Hamilton equation of motion for y(x)y Eq. (3), is 
thus simply given by 

y(x)= G-^x^pix^dx'. (10) 

[It should be noted that the integrations are extended 
only over the region where y(x) does not vanish.] The 
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of the parameters 

*""x where 
ij 

r r dy dy 
Gu= \ G(x,x')—0)—(x')dxdx'. (18) 

J J ddi daj FIG. 1. Cylindrical coordinates used to describe 
the axially symmetric liquid drop. 

The conjugate momenta 0i, • •• ,£» are similarly defined 

condition of incompressibility of the liquid is equivalent Q _ ^ T /^ • sr r - M o^ 
to the condition of constant volume. The volume 3-

7 = 7 r fy^dx (11) With the inverse matrix {G~l)ij, we express 

r = J E ( G - ^ A f r (20) 
should, therefore, be a constant of motion, or %J 

dv/dttt yydx=0. (12) 

and Hamilton's equation for a is simply 

«*=E(G-%ft - . (21) 

In the dynamical treatment y(x) depends solely on T 
through Hamilton's equation. The incorporation of T h e m a t r i x o f t h e k i n e t i c e n e r g y c a n b e , evaluated 
Wheeler's assumption into the kinetic energy assures directly, without referring to the kernel G(x,x), in a 
the conservation of volume, namely, w a y w h l c h l s v e r y convenient for computations. Let us 

expand 
Dx 

y(x)G-1(x,x')p(x')dxdx'=0. (13) — ( * ) = E^<(*)<*<> (22) 
Dt » / / 

III. PARAMETRIC DESCRIPTION OF THE MOTION Dy 
—(x) = "£Bi(x)ai. (23) 

The general integration of the equations of motion Dt * 
for the axially symmetric liquid drop is computationally 
quite involved (Fig. 1). I t is therefore practical to limit The functions Ai{x) and Bi(x) obey the local relation 
the form of the generating line to a family of curves, 
parameterized by a set of parameters ah • • -, an. The Bdx) = Ai(x)—(x)-{ -(x). (24) 
laws of conservation of volume and of linear momentum % % $x Qa. 
have to be incorporated a priori into the equations, by 
properly choosing the family of curves. Instead of a i n terms of these functions, we immediately obtain 
functional variable y(x), we shall have a finite set of 
parameters for our dynamic variables. (An example for f , \ 
such a treatment is the work of Nix,12 where the liquid G^waJ yixfiA^A^^B^B^x^dx, (25) 
drop is assumed to have the form of two spheroids, 
overlapping at first and separated at a later stage.) w h e r e ? h e r e a g w e U ? ^ i n t e g r a t i o n i s extended only 

We thus have o v e r t h e r e g i o n for w h i c h y(x^0m I f w e k n o w for e a c h 
y=y(ai • • • an:x) (14) s u c n s i m ply connected region its extremal point xm as 

a function of the parameters {a t}, we can use it in 
dy Eq. (A8) by integrating up to xm. In this case we get 

y=H—a*, (15) 
don 2 rxm dy dxm 

A**) = — y{x')—{x>)dx'+— (26) 
Dy , dyDx y(x)2Jx don don 
— = y - \ . (16) 
Dt d x D t * 1 a ,*m 

dxm 1 d rxm 

Substituting (15) into (5) and (6), we immediately ob- ^ * ^ = ^ + y ( * ) * 3^- Jx
 y^*di^' 

tain the kinetic energy as a function of the derivatives 

»J. R. Nix, Lawrence Radiation Laboratory Report UCRL- I n t h i s w a y t h f Parametric description is easily handled 
10695,1963 (unpublished). m practical calculations. 
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IV. THE COULOMB ENERGY 

The Coulomb energy of any uniformly charged body 
with density p is given by a six-dimensional integral 

E 
- / / 

dTidr2 

ru 
(27) 

In the case of an axially symmetric body, we can 
simplify the computational procedure by considering 
the electrostatic interaction between circular rings of 
charge. The interaction energy between two coaxial, 
infinitely thin rings of radii n and r2 a distance R apart 
and of unit-length density is given by 

7 M ( 1 , 2 ) = 
4fir2 

L(n+r2)2+R2J12 

XE\ 
/ r 4fif2 ~i1 /2\ 

\ L ( f i + f 2 ) 2 + i P J / 
(28) 

where E(6) is the complete elliptic integral of the first 
kind. Ec can then be calculated by a double surface 
integral, performed over the area enclosed by the x axis 
and the line y(x) 

E < • > ! ! VM(1,2)&I&2 (29) 

A different computational approach13 is to sum over 
interactions between thin cylinders of charge. In the 
Hamiltonian equations of motion, however, the Cou­
lomb energy does not appear explicitly, but only in its 
derivative. The variation of the electrostatic energy as 
a result of a variation by{x) in the shape of the generat­
ing line is simply 

mc= = 2,Pf by (x)y (x) V(y (x) ,x)dx, (30) 

where V(y(x),x) is the electrostatic potential on the 
surface of the charge at the coordinate x resulting from 
the charge distribution defined by y{x). Equation (30) 
implies that we do not have to calculate the self-energy 
of the liquid drop itself at each step in order to find its 
derivative. Rather, 

its expansion in don's. Thus 

bEc 

by{x) 
-=2wpy(x)V(y(x))x) (31) 

and can be evaluated directly. Thus expressed, bEc is a 
four-dimensional integral, whereas Ec itself is a six-
dimensional integral. This renders the use of numerical 
differentiation of Ec unnecessary, and extracts a grave 
source of inaccuracy from the calculation. 

In the parametric description approach, the deriva­
tives of Ec are obtained by replacing the variation by by 

" R. Beringer, Phys. Rev. 131, 1402 (1963). 

dEc f fy 
-2irp (a 

J deti 

•)y(x)V(y(x),x)dx. (32) 

V. A SPECIAL CASE 

We shall here present a quantitative example14 of a 
dynamical treatment of the liquid drop, using three 
parameters as dynamical variables. The integration of 
the equations of motion for this choice is simplified by 
the fact that most of the terms in the Hamiltonian and 
their derivatives can be expressed in closed form. This 
circumstance enables us to check the accuracy of the 
computational procedure for general cases, where such 
a simplification does not occur. 

The liquid drop is assumed to have the form of two 
identical spheres with a canonical quadratic surface (i.e., 
an ellipsoid or a hyperboloid) between them. This 
family of curves contains pre-scission as well as post-
scission forms. A particular case which occurs too is a 
special tripartition of the liquid drop. All these possi­
bilities are illustrated in Fig. 2. Three parameters are 
necessary to specify the function y(x). Two of these are 

-2a 

• 2 b 

_2c 

-2d 

FIG. 2. All possible 
shapes in the family 
of curves with the 
partiuclar choice of 
parameters, q, the 
thickness of the neck, 
and T (or its cosine) 
can be used alter­
nately. Cuves 2a, 
2c, and 2e give pre-
scission, scission and 
post-scission typical 
stages of binary fis­
sion. 2b, 2d, and 2f 
are the correspond­
ing curves for ter­
nary fission. 

_2e 

O cb O" 
14 This was suggested by Dr. W. J. Swiatecki, to whom the 

author is very much indebted. 



F I S S I O N O F A X I A L L Y S Y M M E T R I C L I Q U I D D R O P B 1671 

oo XsQ.5 

FIG. 3. Saddle-point shapes for 
region of fissionability parameter 
0.5-0.7, where they reproduce 
fairly well shapes obtained by use 
of a greater number of distortion 
parameters. 

0 = 0 -
Q=D X=0.7 

the radius of the spheres r and the distance 2d be­
tween their centers. One additional parameter describes 
the form of the neck. This may be taken as the angular 
coordinate of the point on the sphere where the neck 
joins it, or as the width of the neck at its midpoint. The 
conservation of volume then serves to determine 
uniquely the analytic form of the curve y(x). When the 
equations of motions are integrated, the reduction to a 
set of coordinates which are independent for a pre­
scribed volume, assures the conservation of volume 
automatically. 

As a result of the quadratic nature of y(x), the surface 
energy is a simple expression. This obviously applies also 
to the Coulomb self-energy of the spheres, and to their 
interaction energy with the neck. Only the Coulomb 
self-energy of the neck necessitates numerical evaluation. 

This family of curves describes only symmetric 
fission though it can easily be generalized to asymmetric 
fission as well. The whole description, however, mainly 
applies for lower values of the fission parameter X, 
where it fairly reproduces saddle-point shapes calcu­
lated using a large number of distortion parameters.2 

For low X values, symmetric fission is indeed relatively 
more abundant. 

One of the major points in going through a dynamical 
calculation is to find the way in which the large excess 
of potential energy is released during fission. The differ­
ence in potential energy between a sphere of given 
charge and volume, and a system of two infinitely 
separated spheres of half that charge, is of the cder of 
magnitude of 200 MeV. Most of this energy is converted 
into the kinetic energy of the fission fragments, the 
residue being the excitation energy of these fragments. 
The exact division of the energy is determined primarily 
during the first stages of fission, i.e., between saddle 
point and scission point. Later there is practically no 
interchange of energy between the two modes, and the 
system can be represented by two point charges being 
electrostatically repelled by one another. For this reason 
the integration of the equation of motion was not 
carried far beyond the scission point. Moreover, the 
restriction on the form of the fragments induces at that 
stage a transformation of excitation energy into kinetic 
energy which is a result of an artificial smoothing of the 
nuclear distortion. 

The equations of motion—a set of six coupled linear 

differential equations—were integrated by the Runge-
Kutta method, using a variable time increment. The 
results of the calculations and their analysis are pre­
sented in the next section. 

VI. RESULTS 

The calculations were performed in two steps. In the 
first step, saddle-point shapes were found for different 
values of the fissionability parameter X. In the second 
step, the equations of motion were integrated starting 
at saddle-point with various initial conditions on the 
first derivatives of the coordinates. This amounts to 
giving the system energy above the threshold energy, 
and dividing it between the various degrees of freedom. 
However, no weighting of the different choices of initial 
conditions was made. A special emphasis was laid on 
investigating the characteristics of the neck during the 
process. 

Figure 3 gives saddle point shapes for X=0.5, 0.6, 
0.7. The thickening of the neck at the expense of the 
sphere leads to cylinder-like saddle-point shapes at 
higher values of X. To compare these results, with 
those of Ref. 2, £, the deformation energy in units of the 
sphere's surface energy is calculated, yielding £ = 0.0962 
for X=0.5, £=0.0583 for X=0.6, and £ = 0.0246 for 
X=0.7. The valve Z = 90 is chosen throughout the 
calculations. 

Figure 4 illustrates the dependence of the neck 
thickness on time. Three types of such dependence are 
shown. In (i), starting at rest, a slight thickening of the 
neck at first is followed by a rather abrupt approach to 
the scission point, (ii) shows typical oscillations of the 
thickness as it decreases, obtained for medium velocities 
f and d. (iii) is a typical curve obtained when all the 
energy excess at the saddle point is given as positive r, 
and the scission is less abrupt. The energy for (ii) and 
(iii) is approximately 2.5 MeV above threshold. We 
should note that the time between saddle point and 
scission point is between 10~22 and 10~23 sec, and depends 
largely on the initial conditions at the saddle point. 
This dependence is summarized in Table I and the 
dependence on X for similar initial condition is shown 
in Table II. The knowledge of this time is important for 
determining whether the process^can be viewed as 

FIG. 4. Neck thick­
ness variation with 
time between saddle 
point and scission 
point, for three dif­
ferent typical initial 
conditions at saddle 
point. The thickness 
is measured in units 
of the original neck 
thickness, and time 
in natural units (mp 
= 1; ^ = 1.2X10~13 

cmss 1; ep^ 1; 1 time 
unit = 1.12 X 10-22 

sec). 
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TABLE I. The saddle-point to scission-point time as a function 
of initial conditions at saddle point. The units used are the natural 
ones; the charge, mass, and radius of the proton are taken to be 
unity; the time unit is then 1.12XHT22 sec. X=0.70. 

\Pd 
P\ 
- 8 . 0 
- 4 . 0 

0 
4.0 
8.0 

0 

8.92 
8.47 
8.33 
8.02 
7.61 

4.12 

8.07 
7.48 
7.30 
6.94 
6.23 

5.83 

7.05 
6.43 
6.18 
5.52 
4.71 

7.16 

5.99 
5.39 
5.09 
4.21 
3.19 

8.28 

5.01 
4.35 
3.97 
2.91 
1.63 

TABLE II. The saddle-point to scission-point time as a function 
of X, in natural units: (i) For pd=pr = 0, (ii) For ^ = 8.28, 
^ .=8.0. 

X = 

(i) 
(ii) 

0.5 

6.41 
1.10 

0.55 

7.09 
1.22 

0.6 

7.57 
1.35 

0.65 

7.97 
1.49 

0.7 

8.33 
1.63 

adiabatic or not. This determination plays a central role 
in calculations of emission of neutrons from a snapping 
neck.15 

The fraction of the mass in the neck at the moment of 
scission is also of interest. Its dependence on initial 
conditions at saddle point is shown in Table III. 

Table IV gives the dependence of the final kinetic 
energy of the fragment on saddle-point conditions. The 
initial value of Pq (the momentum associated with the 
neck thickness) was taken to be zero for all cases, 

TABLE III. The fraction of mass in the neck, at scission time, as a 
function of initial conditions at saddle point. X=0.70. 

^ 
- 8 . 0 
- 4 . 0 

0 
4.0 
8.0 

0 

0.144 
0.132 
0.121 
0.110 
0.097 

4.12 

0.156 
0.140 
0.125 
0.112 
0.102 

5.83 

0.170 
0.149 
0.132 
0.117 
0.108 

7.16 

0.191 
0.158 
0.141 
0.127 
0.115 

8.28 

0.214 
0.165 
1.151 
0.143 
0.124 

TABLE IV. The total kinetic energy of both fragments as a 
function of initial conditions at saddle point. The unit of energy is 
the difference between the potential energy of one charged sphere 
and two infinitely separated spheres of half size. The quoted values 
of initial pa correspond to increases of the initial kinetic energy by 
0.04 of that unit. X=0.70. 

X 
- 8 . 0 
- 4 . 0 

0 
4.0 
8.0 

0 

0.898 
0.912 
0.926 
0.939 
0.951 

4.12 

0.937 
0.951 
0.964 
0.979 
0.992 

5.83 

0.975 
0.990 
1.001 
1.018 
1.034 

7.16 

1.011 
1.026 
1.036 
1.057 
1.075 

8.28 

1.042 
1.059 
1.070 
1.095 
1.115 

except for those where Pd=0 and Pr<0. For these 
cases P0 was assigned a minimal value to allow the 
system to fission. 

The expected negative correlation between high 
kinetic energies and massive necks is indeed observed. 
A larger neck corresponds to a large distortion of the 
fragment associated with high excitation energy. 

APPENDIX A 

We shall here express the kinetic energy of the liquid 
drop in terms of y (x), using Wheeler's assumption on the 
nature of the motion. 

The irrotationality of the motion implies that there is 
no tangential component of the velocity in the y-z 
plane. The kinetic energy of a thin disk of fluid is thus 
uniquely determined by the rate of change of its 
position along the x axis and its radius (or thickness). 
Performing the integration over such a disk, we obtain 

AT--•iAm\ [ 
/Dx\2 1/Dy\2 

,Dt) 2\DtJ J ' 
(Al) 

where the operator D/Dt gives the time derivative with 
respect to motion of the fluid, i.e., it gives the velocity 
components of a particle of fluid found at (x,y) at a 
certain time. Integrating over dm and assuming uniform 
distribution with density a we get 

T=i''KQ°+lQ'}* m 

y} Dx/Dt, and Dy/Dt are all functions of x. y(x), which 
is the partial derivative of y with respect to time, 
dy(x)/dt) is related to Dy/Dt through 

Therefore, 

Dy dy Dx 

Dt dx Dt 
(A3) 

C [ dy Dx r 

J [ dx Dt L 

dy Dx 
hy2+-v—+\ i+-l —1 iv / 

dx Dt L 2\dxJ A\DtJ 

W-ilM^u, 
= Tt+Ti.+Ta, (A4) 

where T was split into terms depending on different 
powers of Dx/Dt. To evaluate Dx/Dt, we define 

7 <+>(*) = ) = T yixjdx', 
J X 

7<->(x) = x ( yixjdx1. 

(A5) 

(A6) 

The Wheeler condition implies that the order of points 
of the fluid along the x axis is preserved, or 

5 R. W. Fuller, Phys. Rev. 126, 684 (1962). 

D D 
—7<+>(x)=_7(-)(x) = 0. 
Dt Dt 

(A7) 
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Thus (Dx i2 

Dx f y(x)*< ( 
y(x)2—0) = 2 / y{xf)y(x')dx', (A8) I Dt 

Dt J x 
A rx rx 

Dx f» = / / y(x')y(x")y(x')y(x")dx'dx". (A13) 
— ( * ) = - 2 / yWyix'W. (A9) y(xY J J 
Dt J 

4 
rx — _ 

:y(#)2—(; 

Combining these two expressions we can write 
Inserting (A8) in T\ we get 

fj dy, w x r / A / ^ , ?(*)*!—(*)} = f [y(x')y(x")y(x')y(x") 
T^TraJ dx— (x)y(x)J y(x')y(x')dx' y \Dt 1 y(x)* J J 

X6{xix
,,x")dxfdxft, (A14) 

where = 0 , if (af—x)(xf'—x)<0. 
(1 if #<# ' 

0 (#,#')= J . Here, as for Ti, we get, by substituting, 
10 if x>x' 

Equation (A10) can be written in a symmetric way T2=- j I G2{xix
t)y{x)y{x,)dxdxf (A15) 

with 

G2 (x,xf) — nay (x)y {x') 

ni = 2 ne I I dxdxry (x)y (x') 

(dy dy } l/dy \2 
X —{x)y{xf)e(x,x,)+—(xf)y(x)e{x'x) (AlOa) 1 + - U t f ' ) ) 

idx dx J r 2 W / 
or X / d(x",x,x')dx". (A15a) 

1 /• /• J ' "^ 
n i = - / / Gi(x,rf)y(x)y(pi!)dxdrf, (All) 

y(*")2 

To can be written in a similar way as 

G1(X,X') = TT<T\y(xf)—(x)0(x,xf) r 0 = - / Go(x9xf)y(x)y(xr)dxdxr, (A16) 
I d# 2 y y 

+ y ( x ) - ( ^ ( ^ ) l . (Alia) Where
 x , , , _ „ _ ,A 1 /^ 

d# J Go(a;,x) = §7r(ry(^)y(x)5(x,x). (Aloa) 
To evaluate the quadratic term T2 we shall square Combining now (A16), (A15), and (All), we obtain 
Eqs. (A7) and (A8), obtaining Ecl- (5) W l t h 

G=G0+Gi+G2 . (A17) 
(Dx ~ 
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